首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   223400篇
  免费   18722篇
  国内免费   12418篇
电工技术   34603篇
技术理论   22篇
综合类   25328篇
化学工业   11323篇
金属工艺   7757篇
机械仪表   18983篇
建筑科学   19540篇
矿业工程   9222篇
能源动力   8400篇
轻工业   6004篇
水利工程   6771篇
石油天然气   6885篇
武器工业   3811篇
无线电   21689篇
一般工业技术   11614篇
冶金工业   7100篇
原子能技术   2333篇
自动化技术   53155篇
  2024年   310篇
  2023年   1929篇
  2022年   3707篇
  2021年   5000篇
  2020年   5375篇
  2019年   3924篇
  2018年   3624篇
  2017年   5167篇
  2016年   6228篇
  2015年   7294篇
  2014年   14051篇
  2013年   11938篇
  2012年   16618篇
  2011年   17623篇
  2010年   13373篇
  2009年   13398篇
  2008年   13654篇
  2007年   17596篇
  2006年   15838篇
  2005年   14169篇
  2004年   11586篇
  2003年   10467篇
  2002年   7955篇
  2001年   6657篇
  2000年   5452篇
  1999年   4394篇
  1998年   3255篇
  1997年   2635篇
  1996年   2366篇
  1995年   2042篇
  1994年   1682篇
  1993年   1143篇
  1992年   961篇
  1991年   691篇
  1990年   555篇
  1989年   471篇
  1988年   339篇
  1987年   189篇
  1986年   116篇
  1985年   126篇
  1984年   103篇
  1983年   96篇
  1982年   72篇
  1981年   65篇
  1980年   54篇
  1979年   48篇
  1978年   34篇
  1977年   28篇
  1976年   23篇
  1959年   20篇
排序方式: 共有10000条查询结果,搜索用时 296 毫秒
11.
为缓解我国水、能源和粮食资源紧张问题,促进资源可持续利用,构建水-能源-粮食系统,利用耦合协调度模型对我国的30个省(自治区、直辖市)进行测算,并利用空间杜宾模型分析主要影响因素。结果表明:2003—2017年,我国能源、粮食评价[JP]指数高于水资源评价指数,系统综合评价指数逐年递增;大部分省份耦合协调度处于初级协调水平且呈现逐年上升的态势,个别省份耦合协调度濒临失调;耦合协调度空间自相关性较强,虽有明显波动,但是呈现逐年加强的态势;影响耦合协调度的主要因素有从业人口数、固定资产投资额、人均生产总值、人口总数、[JP]文盲人口占比、工业污染排放、城镇化。  相似文献   
12.
A large-scale high-precision scan stage is important equipment in the industrial productions of micro-fabrication such as flat panel display (FPD) lithography systems. Designing controllers for multi-input multi-output (MIMO) systems is time-consuming and needs experience because of the interaction between each axis and many controller tuning parameters. The aim of this study is to develop a peak filter design method based on frequency response data to reduce repetitive disturbance. This data-based approach does not use the model and only uses the frequency response data of the controlled system and the disturbance spectrum calculated from the scanning error data (Contribution 1). The peak filter is designed by convex optimization and satisfies robust stability conditions for six-degree-of-freedom systems (Contribution 2). The control performance of the designed peak filter is experimentally demonstrated with an industrial MIMO large-scale high-precision scan stage in reducing the scanning error of the main stroke of the translation along the x-axis (Contribution 3).  相似文献   
13.
To improve the safety of wet dust removal systems for processing magnesium-based alloys, a new method is proposed for preventing hydrogen generation. In this paper, hydrogen generation by Mg–Zn alloy dust was inhibited with six common metal corrosion inhibitors. The results showed that sodium dodecylbenzene sulfonate was the best hydrogen inhibitor, while CeCl3 enhanced hydrogen precipitation. The film-forming stability of sodium dodecylbenzene sulfonate was tested with different contents, temperatures, Cl? concentrations and perturbation rates. The results showed that this inhibitor formed stable protective films on the surfaces of Mg–Zn alloy particles, and adsorption followed the Langmuir adsorption model.  相似文献   
14.
15.
PEMFC system is a complex new clean power system. Based on MATLAB/Simulink, this paper develops a system-level dynamic model of PEMFC, including the gas supply system, hydrogen supply system, hydrothermal management system, and electric stack. The neural network fits the electric stack model to the simulation data. The effects of different operating conditions on the PEMFC stack power and system efficiency are analyzed. Combining the power of the reactor and the system efficiency to define the integrated performance index, the particle swarm optimization (PSO) algorithm is introduced to optimize the power density and system efficiency of the PEMFC with multiple objectives. The final optimal operating point increases the power density and system efficiency by 1.33% and 12.8%, respectively, which maximizes the output performance and reduces the parasitic power.  相似文献   
16.
A climate neutral energy system in Germany will most likely require green hydrogen. Two important factors, that determine whether the hydrogen will be imported or produced locally from renewable energy are still uncertain though - the import price for green hydrogen and the upper limit for photovoltaic installations. To investigate the impact of these two factors, the authors calculate cost optimized climate neutral energy systems while varying the import price from 1.25 €/kg to 5 €/kg with unlimited import volume and the photovoltaic limit from 300 GW to unlimited. In all scenarios, hydrogen plays a significant role. At a medium import price of 3.75 €/kg and photovoltaic limits of 300–900 GW the hydrogen supply is around 1200 to 1300 TWh with import shares varying from 60 to 85%. In most scenarios the electrolysis profile is highly correlated with the photovoltaic power, which leads to full load hours of 1870 h–2770 h.  相似文献   
17.
As one of the cleanest energies, hydrogen has attracted much attention over the past decade. Hydrogen can be produced using water electrolysis in a Proton Exchange Membrane Electrolysis Cell (PEMEC). In the present study, the performance of the PEMEC, powered by the Photovoltaic-Thermal (PVT) system, is scrutinized. It is considered that the PVT system provides the required electrical power of the PEMEC and preheats the feedwater. A comprehensive numerical model of the coupled PVT-PEMEC system is developed. The model is used to investigate the effect of various operating parameters, including solar radiation intensity, inlet feedwater temperature, and feedwater mass flow rate, on the hydrogen production and operating voltage of the PEMEC at various Exchange Current Densities (ECDs). Furthermore, the effect of integration of Phase Change Material (PCM) and Thermoelectric Generator (TEG) on the hydrogen production of the system is evaluated. According to the obtained results, the PVT-TEG-PEMEC system outperforms other systems in hydrogen production. However, integration of the PVT-PEMEC system with PCM has a negligible effect on its hydrogen production.  相似文献   
18.
In the present work, the heating performance of a new system combined with a new modified baseboard radiator and fan coil is investigated. Using longitudinal fins with special geometry and also forced airflow at the end of the system causes that at the lower inlet water temperature compared with the conventional models, higher heat output rate be obtained. The heat output rate of the new modified system is obtained by experimental metrology based on the European Standard No. EN-442. Temperature and velocity distribution in the room space is done by simulation of the modified system in the Flovent software. Computational fluid dynamics (CFD) results are validated against experimental results and there is a good agreement between them. Also, the energy consumption of the system during the winter season is calculated in TRANSYS software. Experimental results show that the heat output rate of a new modified heating system with inlet water temperature in the range of 45–55°C is on average 4.17 times higher compared with the conventional model. CFD simulation also showed that the combined system provides good thermal comfort conditions. Energy consumption of the new system reduced about 13% compared with conventional models.  相似文献   
19.
During the hot summer season, using electricity systems increases the local anthropogenic heat emission, further increasing the temperature. Regarding anthropogenic heat sources, electric energy consumption, heat generation, indoor and outdoor heat transfer, and exchange in buildings play a critical role in the change in the urban thermal environment. Therefore, the Weather Research and Forecasting (WRF) Model was applied in this study to investigate the heat generation from an indoor electricity system and its influence on the outdoor thermal environment. Through the building effect parameterization (BEP) of a multistorey urban canopy scheme, a building energy model (BEM) to increase the influence of indoor air conditioning on the electricity consumption system was proposed. In other words, the BEP+BEM urban canopy parameterization scheme was set. High temperatures and a summer heat wave were simulated as the background weather. The results show that using the BEP+BEM parameterization scheme of indoor and outdoor energy exchange in the WRF model can better simulate the air temperature near the surface layer on a sunny summer. During the day, the turning on the air conditioning and other electrical systems have no obvious effect on the air temperature near the surface layer in the city, whereas at night, the air temperature generally increases by 0.6 ℃, especially in densely populated areas, with a maximum temperature rise of approximately 1.2 ℃ from 22:00 to 23:00. When the indoor air conditioning target temperature is adjusted to 25–27 ℃, the total energy release of the air conditioning system is reduced by 12.66%, and the temperature drops the most from 13:00 to 16:00, with an average of approximately 1 ℃. Further, the denser the building is, the greater the temperature drop.  相似文献   
20.
Bacillus velezensis zk1 is the dominant bacterium that causing rot in peaches. However, the mechanisms through that this bacterium causes rot have not been elucidated. Here, we explored the mechanisms of peach decay caused by B. velezensis zk1. The invasion of B. velezensis zk1 in peaches resulted in an increase in glucose and arabinose contents in fruit tissues. Moreover, the relative conductivity of the fruit reached 84% after 4 days of culture with bacterial invasion. With the destruction of cells, the malondialdehyde content increased, whereas the vitamin C, dialdehyde, flavonoid and total phenol contents decreased. Polyphenol oxidase, superoxide dismutase, catalase, peroxidase, ascorbate peroxidase and ammonia lyase activities also decreased. Overall, these findings demonstrated that B. velezensis zk1 infection damaged peach chloroplasts, mitochondria, respiratory chain activity and related free radical scavenging enzyme systems, thereby disrupting the normal physiological metabolism of peaches and causing rot.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号